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| Seepage Channels

The geometric beauty of channel networks is undeniable!

Pictured above is an example of the geometry we expect when
channel growth is largely driven by the relaxation of the underlying
groundwater table. Our growth hypothesis:

Channels grow in the direction that captures max water flux.

Darcy’s Law in the Dupuit approximation can be written ¢ ~
—hVh. It Vg ~ P (precipitation), we can rescale and obtain
V?p = —1. Near the channels, P < groundwater discharge, so:

Vi = (0

By associating a point (x,y) with a complex number, z = x + 1y,
o(xz,y) can be written as a power series, ®(z) = > a,2". We map
this onto an infinite channel using the map w = v/iz:

ag(iz)g/Q)

We surmise that first three coefficients of this expansion manifest
themselves in the field as follows:

O(Viz) = —i (al(iz)l/2 a2 O(z%)

a1 Groundwater Discharge ~ tip growth velocity
a9 Asymmetry Term ~ stream bending
as Presence of water table bifurcation

Our hypothesis for a; comes observations in the shape of the field.
By changing to polar coordinates (z = re’?*™/?), the second deriva-
tive of our field function at & = 0 exhibits an inflection point when
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a; 1S always positive, and as a result, for a3 < 0, a bifurcation in the
water table must exist at some distance » in front of the channel.

Box Growth

But does a; behave as we hypothesize? We create a scenario
in which a very long channel grows within a box towards another
channel a distance d from its tip. We measured a3 as a function of
d.
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Backward Growth

Does a; still behave in Florida? We used LIDAR data to grow
the Florida channel heads back along their geometric history at a
speed a;, recalculating a; at each time step. Once two branches
were fully retracted to their point of bifurcation, a; was noted.
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Due to the eclectic nature of our boundary conditions, however, a
clear a3 trend did not manifest in our backward growth record.
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‘Stream Meandering

Previous results support the idea that incipient bifurcations split off
at a 27 /5 angle.
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But this relies on our assumption that growth occurs in an infinite
plane, and that there exists a systematic length invariance, but this
IS not always true. Inhomogeneities in the groundwater table have
some non-zero effect when [ ~ [,, where [ is the length of a chan-
nel, and [, is the length of perturbations in the network. But as

[ > [, the channel overcomes these inhomogeneities and fol-
lows the direction of the streamline entering the tip. We demon-
strate this by measuring the average angle versus distance from
the point of bifurcation.
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The angle starts at roughly 7 /2, but shifts below the expected
27 /5 value, implying an initial 7 /2 split, and a narrowing as the
channel is driven towards 27 /5. To confirm this behavior, we track
the average angle the entire channel makes with the bisector.
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In future work, we hope to combine these results with the
“Loewner Equation” to theoretically qualify this trajectory.




